⁴⁰Ar/³⁹Ar Thermochronology: Diffusion and Dodson

Clare Warren Helsinki, 24 October 2017

Learning Outcomes

- You will gain an understanding of:
 - Diffusion in minerals and rocks
 - Closure temperature
 - The assumptions behind the Dodson $\rm T_{\rm C}$ formulation
- You will be able to:

Calculate closure temperatures

Diffusion

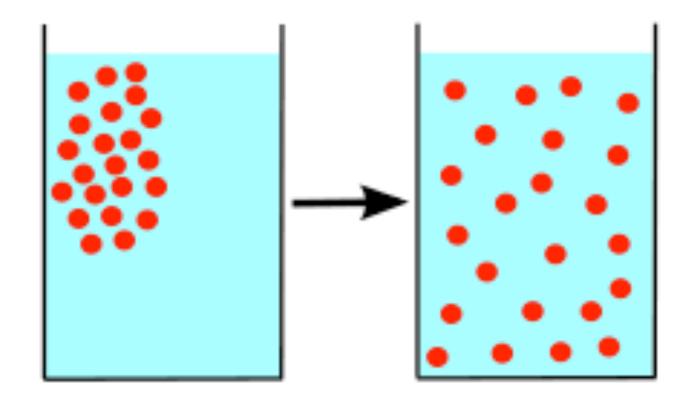
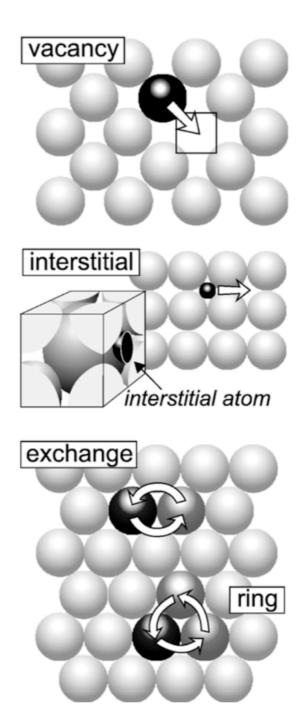
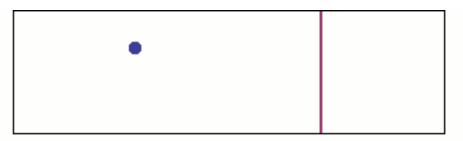


Image: Wikipedia



Diffusion in Minerals

Image: Watson + Baxter 2010

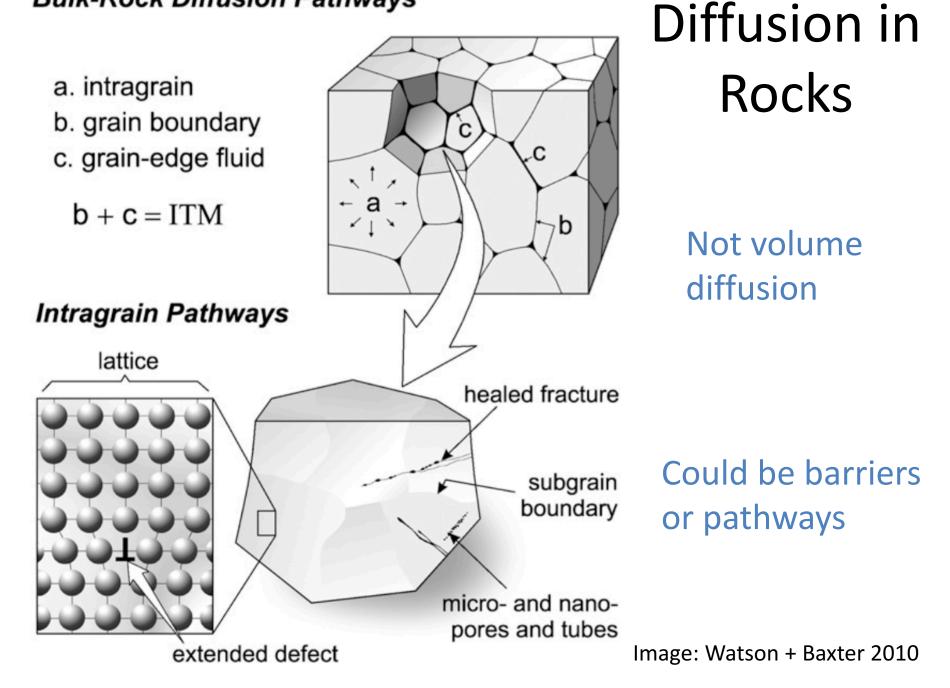


Low concentrations: random walk

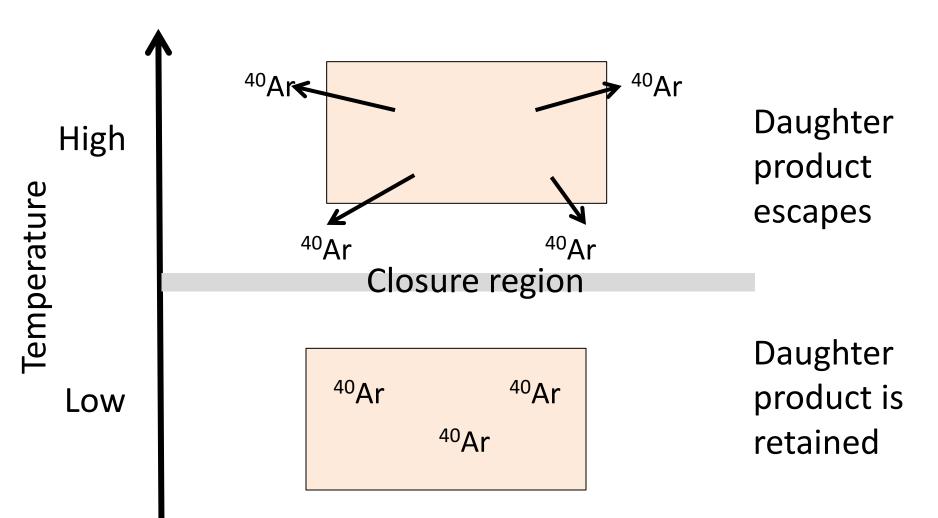
High concentrations: smooth and deterministic

By Sbyrnes321:, https://commons.wikimedia.org/w/index.php?curid=8995324

Bulk-Rock Diffusion Pathways



Closure Temperature



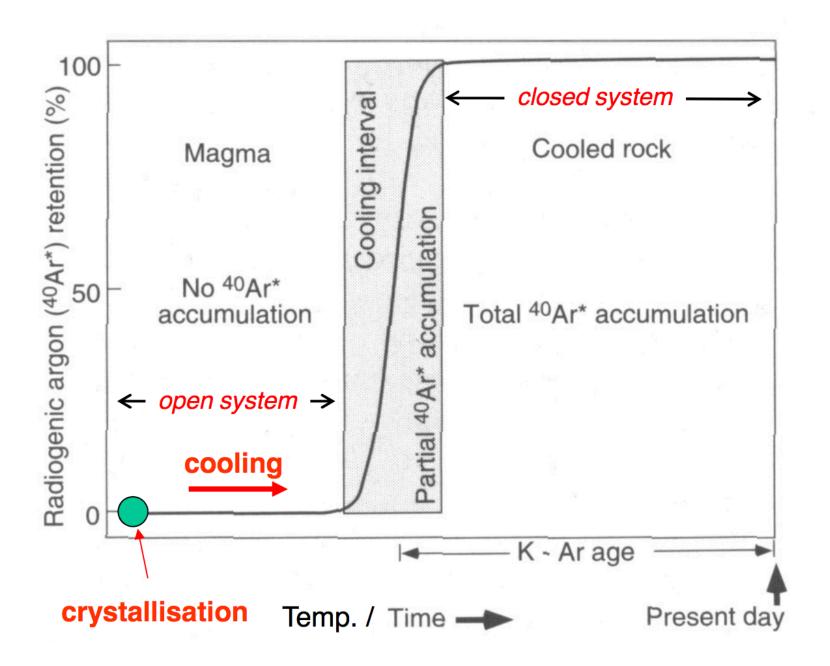


Image: http://studylib.net/doc/18050406/ar-ar-geo--thermochronology

Fick's 2nd law of diffusion $\frac{\partial c}{\partial t} = D\nabla^2 c + S$

This equation describes the concentration (of argon) in 3 dimensions as a function of space and time

- C= concentration
- D = diffusion coefficient
- ∇^2 = (x,y,z directions)
- S = source term (Ar is being created over time)

Linking age to T: Dodson T_c

$$\frac{\partial c}{\partial t} = D\nabla^2 c + S$$

Note: Mistake in abstract of Dodson paper: E_a and R transposed!

$$T_{c} = E_{a} / [R \ln(A\tau D_{0} / a^{2})]$$

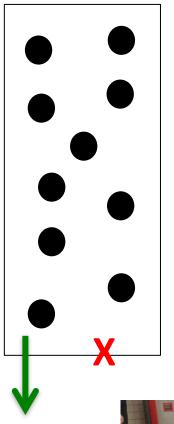
$$\tau = RT^2/(E dT/dt)$$

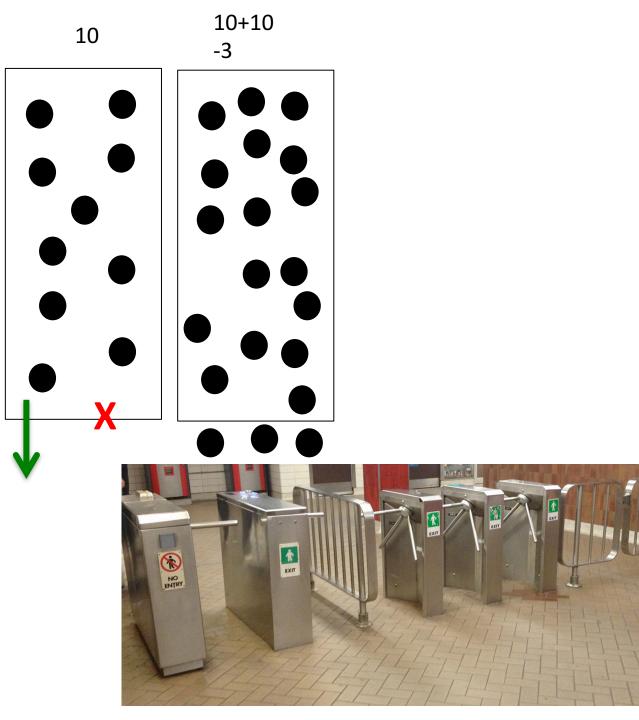
- R = gas constact
- E_a= activation energy

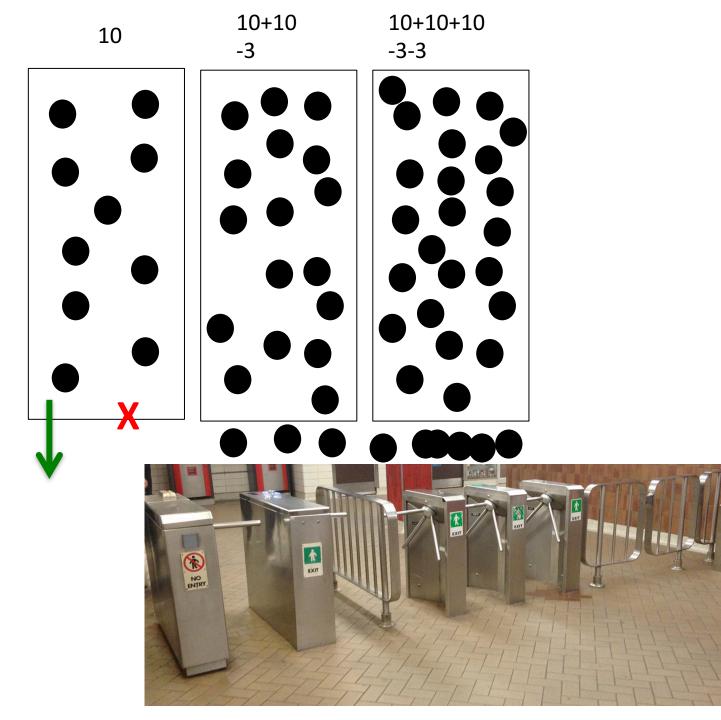
Note: dT/dt must be decreasing

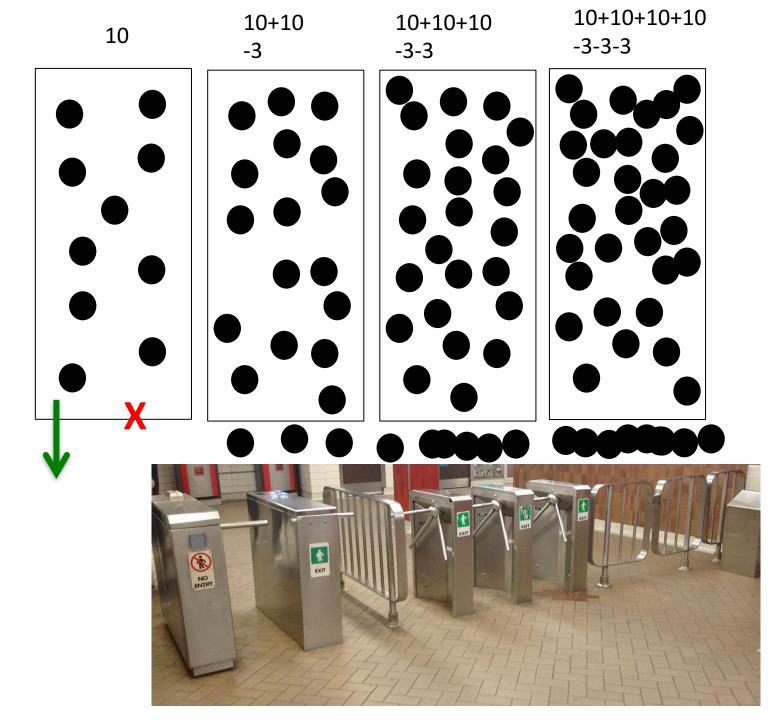
- A = shape factor (line, plane, sphere)
- τ= time constant with which D diminishes with T
- D₀ = diffusion coefficient
- a = diffusion radius

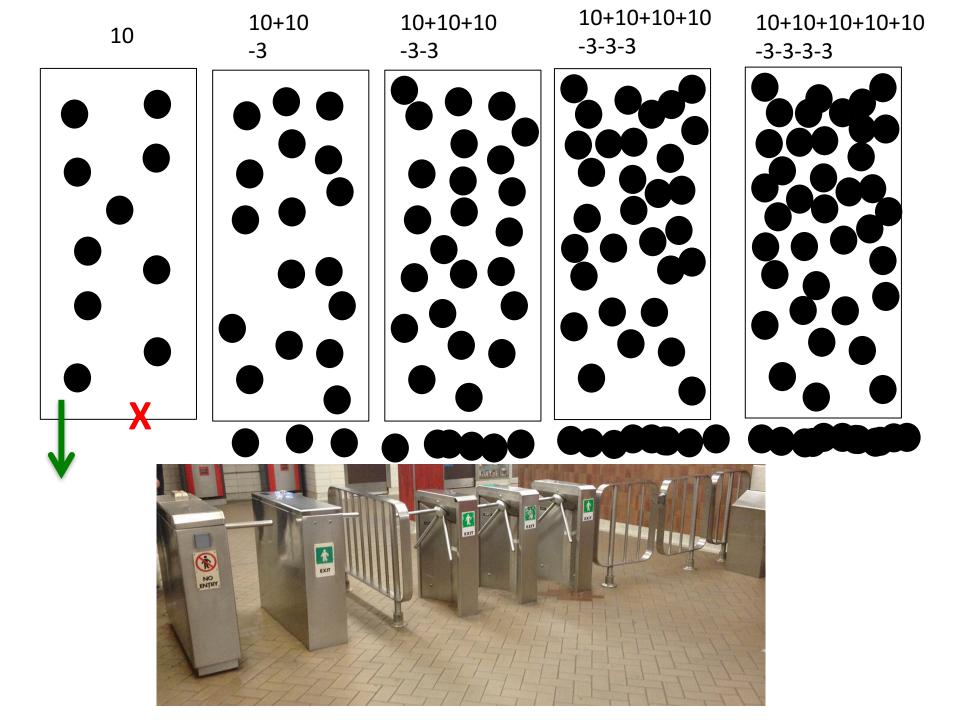
Dodson, CMP, 1973



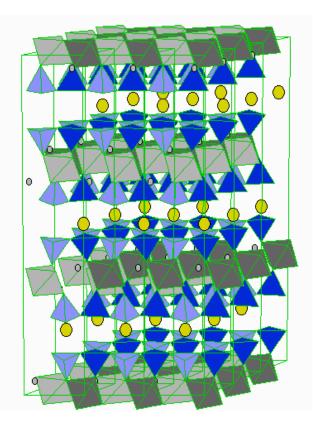


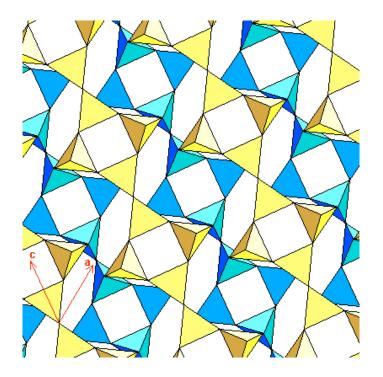






Remember minerals have different lattice properties





Mica: cylinder (2D)

Images: ruby.colorado.edu and uwgb.edu

Feldspar: sphere (3D)

Create a T_c Spreadsheet for muscovite

Constants:

R = 1.986 x 10⁻³ kcal/K/mol

D₀= 2.3 cm² s⁻¹ (Harrison et al., 2009)

 $E_A = 63 \text{ kcal mol}^{-1}$ A = 27 for cylinder

$$T_{c} = E_{a} / [R \ln(A\tau D_{0} / a^{2})]$$

$$\tau = RT^{2} / (E_{a} dT / dt)$$

activity

Let's use a grain radius of 0.05 cm And a cooling rate of 10 K Ma⁻¹ (convert to K s⁻¹)

What is T_c ? Hint: you will need to iterate. Choose a starting temperature to calculate τ , then iterate from that value

Now calculate and plot a graph of:

 Closure T for muscovite for cooling rates from 0.01 to 100 K Ma⁻¹

activity

• For grain radii of 0.001 to 1 cm

Well done!

- You can use this spreadsheet to calculate Tc of:
- Ar in other minerals
- He in other minerals
- Pb in other minerals....
- Basically diffusion of any radiogenicallyproduced element in any mineral.

Mineral	$D_0 \ ({\rm cm}^2 \ {\rm s}^{-1})$	$E_a \; (\mathrm{kJ} \; \mathrm{mol}^{-1})$	Reference
$\begin{array}{c} Phlogopite \\ (Ann_4) \end{array}$	$0.75^{+1.7}_{-0.52}$	242 ± 11	Giletti (1974)
$\begin{array}{c} \text{Biotite} \\ (\text{Ann}_{56}) \end{array}$	$0.077_{-0.06}^{+0.21}$	196 ± 9	Harrison et al. (1985)
$\begin{array}{c} \text{Biotite} \\ (\text{Ann}_{56}) \end{array}$	$0.015_{-0.005}^{+0.022}$	188 ± 12	Grove and Harrison (1996)
$\begin{array}{c} \text{Biotite} \\ (\text{Ann}_{56}) \end{array}$	$0.075_{-0.021}^{+0.049}$	197 ± 6	Combined data of Harrison et al. (1985) and Grove and Harri- son (1996)
$\begin{array}{c} \text{Biotite} \\ (\text{Ann}_{56}) \end{array}$	$0.40^{+0.96}_{-0.28}$	211 ± 9	Grove and Harrison (1996)
Muscovite *	$0.033^{+0.213}_{-0.029}$	183 ± 38	Hames and Bowring (1994)
Hornblende	$0.06^{+0.4}_{-0.01}$	276 ± 17	Harrison (1981)

Now been updated by Harrison et al., 2009

activity TIME

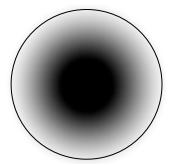
What approximations are involved in using T_c to link age to temperature?

Linking ⁴⁰Ar/³⁹Ar ages to temperature: assumptions

• No initial Ar in grain

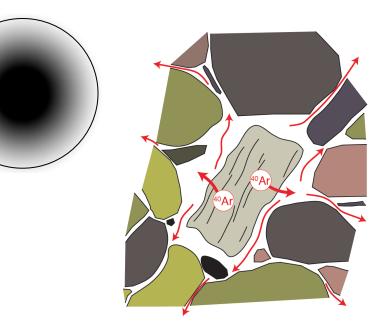
Linking ⁴⁰Ar/³⁹Ar ages to temperature: assumptions

- No initial Ar in grain
- Thermally-activated volume diffusion



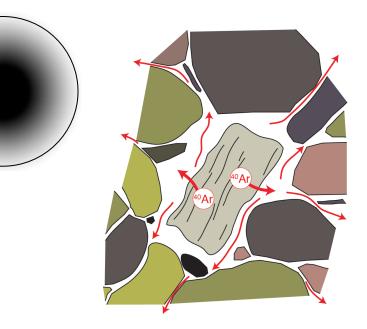
Linking ⁴⁰Ar/³⁹Ar ages to temperature: assumptions

- No initial Ar in grain
- Thermally-activated volume diffusion
- Infinite grain boundary reservoir (open system)

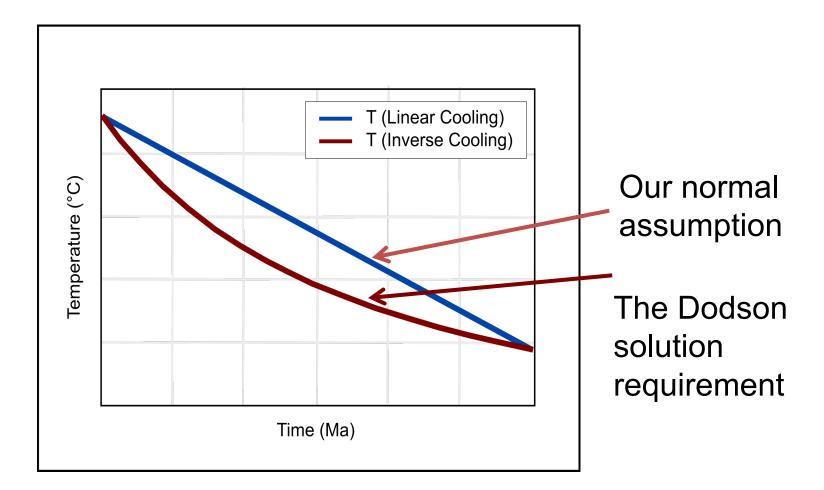


Linking ⁴⁰Ar/³⁹Ar ages to temperature: assumptions

- No initial Ar in grain
- Thermally-activated volume diffusion
- Infinite grain boundary reservoir (open system)
- T_{crystallisation} >> T_{closure}



Dodson: Specific 1/T cooling path



Conditions for the Dodson solution

• Initially, concentration = 0

$$\frac{\partial c}{\partial t} = D\nabla^2 c + S$$

• Where does the time dependence sit?

Conditions for the Dodson solution

• Initially, concentration = 0

$$\frac{\partial c}{\partial t} = D\nabla^2 c + S$$

- Where does the time dependence sit?
 - In S (source term)
 - In D = $D_0 \exp(-E_a / RT)$ (temperature linked to time)
 - Analytical solution possible if E_a/RT is linear with time
 - i.e a 1/time temperature dependence (messy!)

Linking ⁴⁰Ar/³⁹Ar ages to temperature: assumptions

- No initial Ar in grain
- Thermally-activated

Shouldn't use Dodson's formulation unless these assumptions are satisfied

How can we tell? That's up next...

Learning Outcomes

- You will gain an understanding of:
 - Diffusion in minerals and rocks
 - Closure temperature
 - The assumptions behind the Dodson $\rm T_{\rm C}$ formulation
- You will be able to:

Calculate closure temperatures