

(U-Th)/He dating: principles and applications

Cécile Gautheron cecile.gautheron@u-psud.fr

Helsinki University – 26 octobre 2017

Paris universities

University of Paris Notre Dame (Sorbonne) was born in 1150 (2nd university in Europe)

=> Introduced several academic standards such as doctoral degrees

Paris universities

After 1968 => 15 autonomous universities

More than 7 universities with a Geosciences department

University Paris Sud 11 was born in 1955

- 30 000 students from 125 nationalities
- 2500 researchers (40 in the Earth Science department)
- Pluridisciplinary research

(1) (U-Th)/He dating system

I. Introduction, generalities

II. (U-Th)/He principles (chronometer vs thermochronometer)

(2) How to get an (U-Th)/He age

(3) Applications

- III. Apatite (U-Th-Sm)/He (AHe) method
- IV. Other applications (zircon, iron oxides,...)

(4) Exercises (Tc, ejection, weight, Rs), thermal modeling

(1) (U-Th)/He dating system

I. Introduction, generalities

II. (U-Th)/He principles (chronometer vs thermochronometer)

(2) How to get an (U-Th)/He age

(3) Applications

- III. Apatite (U-Th-Sm)/He (AHe) method
- IV. Other applications (zircon, iron oxides,...)

(4) Exercises (Tc, ejection, weight, Rs), thermal modeling

I. Quantification of rocks thermal evolution through time

U-Th-Sm (parent) => He (daughter)

Complete daughter retention => chronometer

Daughter loss by diffusion => thermochronometer (Closure temperature and Partial Retention Zone)

I. Thermal sensitivity of thermochronometers

> (U-Th)/⁴He method applied on apatite, zircon and iron oxides

Thermal sensitivity from 40 to 200°C

I. Meaning of thermochronological ages

Plutonic rock example:

Rock formation age > thermochronometric age

I. Meaning of thermochronological ages

Sedimentary, volcanic rock or iron oxides duricrust examples:

Rock formation age \geq or \leq thermochronometric age

> A thermochronological age (or date) is an **apparent** age

> Need to apply some **corrections** (alpha ejection, diffusion)

⁴He accumulation in crystal lattice reflects = f (thermal history, diffusion coefficient, grain size, ...)

I. Quantification of erosion and weathering processes

Apatite, zircon, titanite... can be used to quantify rock thermal history and erosion processes ...

Iron oxides (hematite, goethite) can be used to quantify weathering episodes (paleosurfaces), timing of ore deposits ...

(1) (U-Th)/He dating system

I. Introduction, generalities

II. (U-Th)/He principles (chronometer vs thermochronometer)

(2) How to get an (U-Th)/He age

(3) Applications

- III. Apatite (U-Th-Sm)/He (AHe) method
- IV. Other applications (zircon, iron oxides,...)

(4) Exercises (Tc, ejection, weight, Rs), thermal modeling

II. (U-Th-Sm)/He dating method principles

- 1) He atoms <u>production</u> in minerals during U, Th, Sm decay
- 2) Long alpha <u>ejection</u> (15-20 μ m)

3) Possible <u>diffusion</u> in the crystal, depending on :

- a) diffusion coefficients and
- b) thermal history

II. U-Th-Sm incorporation in crystal lattice

U, Th and Sm incorporation (substitution or cluster) in almost any crystal lattice:

➤ U = 0.01 - 1000 ppm; Th/U = 0.1 - 20; Sm = 10 - 3000 ppm

II. U-Th-Sm radioactive natural decay

²³⁵U + ²³⁸U = 99.99% U; ²³²Th = 100 % Th and ¹⁴⁷Sm = 0.15 % Sm

Alpha particles production during U-Th-Sm alpha decay

II. Alpha particles production => high energies

Alpha halo in biotite

SRIM; Ziegler (2008); Ketcham et al. (2011)

High kinetic energy of α particles,

 α -----> ⁴He (after taking electrons)

He atoms will stop after some microns depending on initial energy, lattice density, chemistry and Th/U ratio (See EXERCICE 1). 17

II. Alpha particles energies = recoil damage

Associated to alpha decays, the "father" element will do a recoil.

Damage creation at nanometer scale

Trachenko, 2003

II. ⁴He production

[He] =

$$\left(8 \times \frac{137.88}{138.88} \left(e^{\lambda_{238}t} - 1\right) + 7 \times \frac{1}{138.88} \left(e^{\lambda_{235}t} - 1\right)\right) \times \begin{bmatrix}U\end{bmatrix}$$
 From ²³⁸U and ²³⁵U and ²³⁵U

$$+ \left(6 \times \left(e^{\lambda_{232}t} - 1\right)\right) \times [Th] \qquad From \\ ^{232}Th \qquad$$

$$+ \left(1 \times 0.1499 \times \left(e^{\lambda_{147}t} - 1\right)\right) \times \left[Sm\right] \qquad From \\ {}^{147}Sm$$

eU (effective Uranium) = U + 0.24 Th + 0.0005 Sm

Diffusion is a microscopic (atomic) process that can be seen :

Microscopic level :

1D

Diffusion is a microscopic (atomic) process that can be seen :

Microscopic level :

3D

II. Diffusion in minerals : microscopic or macroscopic point of view

Diffusion is a microscopic (atomic) process that can be seen :

 ♦ Random diffusion can be described at macroscopic level using Fick's law:

$$\frac{\partial C}{\partial t} = D \left(\frac{\partial C^2}{\partial x^2} + \frac{\partial C^2}{\partial y^2} + \frac{\partial C^2}{\partial z^2} \right)$$

At first order, diffusion coefficient, D, follows the Arrhenius law:

Reiners (2009)

II. Diffusion in a simple system : one crystal

Ehlers and Farley (2003)

- The grain volume is the diffusion domain
- One crystal size (a)
- \succ Similar D₀ and E_a for all the grain size

II. Diffusion in a complex system : polycrystalline structure

 Polycrystalline structure in iron oxide crystals (hematite and goethite)

- Different crystal sizes (a)
- Difficulty to determine D₀ and E_a

Farley and Flowers (2012) Allard et al. (Submitted)

II. Diffusion in a complex system : fast paths

Breccia and fault filling calcite samples from the **Eocene/Oligocene Gondrecourt graben**.

Copeland et al. (2007); Lovera et al. (1989, 1991); Cros et al. (2014)

II. Diffusion in a complex system : use of a MDD model.

mineral surface

Lovera et al. (1989; 1991); Gautheron and Tassan-Got (2010); Cros et al. (2014)

> Different parameters can influence diffusivity in a crystal:

Gautheron et al. (in prep.)

> He retention in crystal depends on:

- 1. Grain size (a)
- 2. Diffusion coefficient (D_0 , E_a)
- 3. Thermal history (T-t)

> Need to get useable values such as of:

- 1. Closure temperature (Tc)
- 2. He Partial Retention Zone (He-PRZ)

Ehlers and Farley (2003)

> Tc: when 50% of produced He atoms is retained in the crystal

> He-PRZ: between 10 to 90% of the retained He

See EXERCICE 1

Using Gautheron and Tassan-Got (2010) code ³⁰

II. Closure temperature example

Cooling rate (°C/myr)

Modified from Reiners (2005)

> Tc = $f(D_0, E_a, cooling rate, grain size)$

TAKE HOME MESSAGE:

(U-Th-Sm)/He age is <u>not the time</u> when rock crosses the closure temperature (Tc) or very rarely

Diffusion domain and diffusion coefficient strongly influence thermochronometric age (1) (U-Th)/He dating system

- I. Introduction, generalities
- II. (U-Th)/He principles (chronometer vs thermochronometer)

(2) How to get an (U-Th)/He age

(3) Applications

- III. Apatite (U-Th-Sm)/He (AHe) method
- IV. Other applications (zircon, iron oxides,...)

(4) Exercises (Tc, ejection, weight, Rs), thermal modeling

(2) From sample to grain separation

Crushing, sieving, cleaning...

Need of 1 to 10 kg of rock to obtain enough "datable" apatite grains

Ehlers and Farley (2003)

Drastic apatite selection criterion, grain size measurement + geometries (pyramids, broken faces)

(2) Grain morphology impact on AHe age interpretation

AHe age will be impacted by:

- 1. Crystal size (L, H, W),
- 2. Grain morphology,
- 3. Broken faces

(2) From sample to grain separation

Iron oxide duricrusts or pisoliths (crystallographic characterization)

- sphere with homogeneous U-Th-Sm repartition

$$F_T = 1 - \frac{1}{4} \frac{SR}{V} = 1 - \frac{3}{4} \frac{R}{R_s}$$

For realistic geometries (2 approaches):

- Hexagonal ± pyramids, for homogeneous U-Th-Sm

$$F_{T} = 1 - \frac{3}{4} \frac{R}{R_{s}} \left[\left(0.2093 - 0.0465 N_{p} \right) \left(W + \frac{L}{\sqrt{3}} \right) + \left(0.1062 + \frac{0.2334 R}{R + 6 \left(W \sqrt{3} - L \right)} \right) \left(H - N_{p} \frac{W \sqrt{3/2} + L}{4} \right) \right] \frac{R^{2}}{V} \right]$$

Ketcham et al. (2011) 38

For crystals zoned in U-Th-Sm, F_{ZAC} factor can be determined analytically or using a Monte Carlo simulation

Rim Thickness (µm)

Vernon et al. (2009)

Hourigan et al. (2005)

(2) Correcting factor, weight, diffusion domain

Calculation using a Monte Carlo model of:

- Grain weight (µg)
- F_T, F_{ZAC} alpha ejection correction (0 to 1)
- Rs sphere equivalent radius (μm) for isotropic or anisotropic diffusion domain
 - Hexagonal (apatite)
 - Tetragonal (zircon)
 - ± pyramids, broken faces

Need of a F_{T} > 0.65 and Rs > 40 $\mu m...$

Version date: 10/02/2012 based on Qt: http://gt.nokia.com/

Ketcham et al. (2011); Gautheron et al. (2012)

http://hebergement.u-psud.fr/flojt/

Platinum tube (apatite), **niobium** tube (zircon, titanite) or **niobium** foil (iron oxides, calcite...)

Capsule is used to transport the grain(s) and to ensure He degassing (laser light absorption).

(2) ⁴He analysis

- Extraction, purification and analysis line for ⁴He content determination at ~2%
- Special gas purification for iron oxides (i.e. goethite) and calcite because of large H₂O and CO₂ degassing

(2) U-Th-Sm analysis

Addition of pure selected isotopes (example: ²³⁵U, ²³⁰Th, ¹⁴⁹Sm) spikes during dissolution.

(2) U-Th-Sm analyses by ICPMS

²³⁸U, ²³²Th and ¹⁴⁷Sm determination by isotopic dilution method (see Evans et al., 2005 for details)

(2) Base hypothesis

- U-Th decay series are on secular equilibrium (t>1Ma)
- No U-Th-Sm loss
- No common helium, or ⁴He, ²¹Ne_c << ⁴He* (radiogenic)

No ⁴He implantation from neighbor minerals

(2) Impact of He implantation on AHe age

450

(2) (U-Th-Sm)/He age calculation

1. (U-Th-Sm)/He age: Raw age =
$$\frac{\begin{bmatrix} 4 \\ He \end{bmatrix}}{P*(He \ production)}$$

2. He instantaneous production (P* / per year):

$$P^* = \left(8 \times \frac{137.88}{138.88} \left(e^{\lambda_{238} \times 1} - 1\right) + 7 \times \frac{1}{138.88} \left(e^{\lambda_{235} \times 1} - 1\right)\right) \times \left[U\right] + \left(6 \times \left(e^{\lambda_{232} \times 1} - 1\right)\right) \times \left[Th\right] + \left(1 \times 0.1499 \times \left(e^{\lambda_{147} \times 1} - 1\right)\right) \times \left[Sm\right]$$

3. Alpha ejection corrected age:

Corrected age =
$$\frac{Raw \ age}{F_T}$$

(2) He age reproducibility

- > Analytical age: <4% = <2% for He and <2% for U-Th-Sm measurements
- Error on He age with ejection factor => 8-10%

(2) Inversion of low temperature thermochronological data

ightarrow HeFTy :

\rightarrow Tt path modeling

- Tt + pluri-samples (vertical profile) modeling

 \rightarrow QTQt :

ightarrow PECUBE :

- 3D modeling + vertical profile + faults ...

Ketcham (2005); Gallagher (2012): Braun (2003)

TAKE HOME MESSAGE:

Do not underestimate the time to prepare and pick your grains (especially for apatite)

Measure all grains geometry and report all data (L, H, W, geometries)

Error on (U-Th)/He age will be ~10%

(1) (U-Th)/He dating system

- I. Introduction, generalities
- II. (U-Th)/He principles (chronometer vs thermochronometer)
- (2) How to get an (U-Th)/He age

(3) Applications

- III. Apatite (U-Th-Sm)/He (AHe) method
- IV. Other applications (zircon, iron oxides,...)

(4) Exercises (Tc, ejection, weight, Rs), thermal modeling

III. Apatite He age distribution

- > AHe age dispersion is often higher than analytical error (~8%)
- 1. French foreland example (buried detrital apatite)

Schwartz et al. (2017)

Important dispersion for higher elevation sample => non total diffusion?

III. Apatite He age distribution

2. Moroccan margin exhumed during Atlantic breakoff

Important AHe age dispersion: relation with eU content?

III. Apatite He diffusion coefficient

- > Published He diffusion coefficient using different methods:
- Under vacuum degassing experiments
- 2. Ion beam experiments
- 3. DFT calculation

Complied 1987-2010 data by Baxter (2010)

III. Relationship between eU and AHe age

Shuster et al. (2006); Trachenko (2003); See Green et al. (2006) for similar observation

Model where He atoms are trapped into damage zone => increase of He retention in apatite crystal and Tc value

III. Relationship between damage and diffusion coefficient

Empirical data showing the change of diffusion coefficient with artificial damage content

=> Tc ranges from 40 to > 100°C

III. Implication of damage content on He-PRZ

Gautheron et al. (2009)

Damage production and change of He diffusion, will change the Tc and He-PRZ through time

Effective track density (tracks/cm²)

Two damage + annealing models are used :

Flowers et al. (2009): calibrated on natural + irradiated samples

Gautheron et al. (2009): calibrated on "old" natural AHe ages

III. Chemical impact on diffusion

Djimbi et al. (2015)

- Chemical impact on He diffusion
- Lower Tc for undamaged apatite Tc=30-40°C

III. Chemical impact on diffusion

Apatite chemistry play a role on damage annealing rate (such as for apatite fission tracks)

Modified from Gautheron et al. (2013); Modeling: HeFTy Ketcham (2005) + Flowers et al. (2009)

(See EXERCICE 3)

III. Damage impact on diffusion

Gerin et al. (2017)

We are currently calibrating the new He damage model
New code will be implemented into QTQt and HeFTy in 2018

III. Use of apatite He age dispersion

Schwartz et al. (2017) Simulation QTQt (Gallagher, 2012), with Flowers et al. (2009) code

AHe age dispersion is useful to refine not only the burial time and temperature

Leprêtre et al. (2015); QTQt simulation using AHe and AFT data (Gallagher (2012)

Need to consider grain chemistry variation in addition to grain size and damage model

TAKE HOME MESSAGE:

- A geological meaning is associated with AHe age dispersion as the age reflects the impact of:
 - 1. Grain size (diffusion domain)
 - 2. Damage content (eU + time + annealing via chemistry)
 - 3. Thermal history

Adapt the number of analyzed grains as a function of thermal history (3 to > 10 apatite crystals) (1) (U-Th)/He dating system

I. Introduction, generalities

II. (U-Th)/He principles (chronometer vs thermochronometer)

(2) How to get an (U-Th)/He age

(3) Applications

III. Apatite (U-Th-Sm)/He (AHe) method

IV. Other applications (zircon, iron oxides,...)

(4) Exercises (Tc, ejection, weight, Rs), thermal modeling

IV. Others applications

(U-Th)/He system can be applied to a large range of minerals

Which geological application ?

- **1. Higher temperature information than apatite** => zircon, titanite
- 2. Ore deposit, laterite dating => goethite, hematite, magnetite

Zircon crystal can be found in a large variety of rocks (plutonic, volcanic and sedimentary)

- Rich U-Th content: eU= 100 to 3000 ppm (He production from Sm is "null")
- 2. U-Th zoned crystal
- 3. Lower stopping distance

Tagami et al. (2003)

➤ Tc= 140-200°C (>AHe)

- Strong modification of diffusion coefficient by recoil damage,
- 2. Damage clustering and interconnection
- 3. Lattice amorphisation at high dose

Guenthner et al. (2013)

IV. Interpretation of ZHe data

Guenthner et al. (2013)

Used of ZHe data dispersion to determine a precise thermal history, similarly to AHe

Shuster et al. (2005); Vasconcelos et al. (205)⁷⁰

IV. Iron oxides

> He diffusion behavior in hematite and goethite

 \succ Crystals of 0.1 μ m

Hematite $\succ T_c$ (He)= 56°C

Goethite

➤ T_c (He)~ 49°C

Shuster et al. (2005); Farley and Flowers (2012); Balout et al. (2017); Allard et al. (Submitted)

IV. Ore deposits

> Ore-deposit formation : Carajas Mountains (Brazil)

Vasconcelos et al. (2015) and references therein
IV. Ore deposits

> All Amazonian and Australian laterites ages

Vasconcelos et al. (2015) and references therein

Similar ages given by the K-Ar/Ar-Ar and (U-Th)/He systems

TAKE HOME MESSAGE :

(U-Th-Sm)/He dating can be applied to many systems if:

- 1. Crystal contains U-Th-Sm AND
- 2. Produced He atoms are quantitatively retained in crystal lattice at surface temperatures (because of diffusion <u>~Tc>40°</u> C) AND
- Grain or sample (made of polycrystalline grains) size are > 100 μm (because of significant alpha ejection) AND
- 4. Possible strong damage impact on crystal lattice

(1) (U-Th)/He dating system

I. Introduction, generalities

II. (U-Th)/He principles (chronometer vs thermochronometer)

(2) How to get an (U-Th)/He age

(3) Applications

- III. Apatite (U-Th-Sm)/He (AHe) method
- IV. Other applications (zircon, iron oxides,...)

(4) Exercises (Tc, ejection, weight, Rs), thermal modeling

Different exercises using diffusion coefficient (or Tc), and notions seen during lecture: ejection, diffusion domain, age calculation and dispersion

- **1.** Closure temperature calculation
- 2. Alpha ejection, Rs, weight determination (Qtflojt)
- 3. AHe age simulation using HeFty

With the given D₀ and E_a, calculate the closure temperature
 Tc, for a given cooling rate and grain size (a)

Ea (kJ/mol)	139.5				
D ₀ (m²/s ⁻¹)	3.37x10 ⁻²				

With R=8.31 J/mol/K; A=55 and T=273 K

Using an excel sheet, enter the need values need

	values	
Ea (J/mol)	139528,4	
D ₀ (m²/s ⁻¹)	3,37E-02	
a (m)	1,70E-04	
D ₀ /a²	1,17E+06	!! Values to change !!
R	8,31	
A (sphère)	55	T1 Temperature (°C)
Т (°К)	345,00	72,00
		Cooling rate (°C/Ma)
Cooling rate (°/s)	3,17E-13	10
tau	2,24E+13	
Tc (°K)	345	
Closure temp Tc (°C)	71,66	When it's the same value of T1

conversion 1 cal => 4.18 J/mol

- 1. You have carefully selected apatite crystals and reported all measurements. Using those values, calculate the:
 - a. Apatite weight
 - b. Rs (equivalent diffusion domain)
 - c. F_{T} (ejection factor)

- 2. For one sample, you are not sure if the termination was $\underline{2}$ <u>broken faces or no pyramids</u>. Test the influence on the F_T factor.
- 3. Test the influence of **U-Th zonation** on the F_T factor.
- 4. Calculate the corrected AHe age and estimate the maximum age dispersion induced by the F_T factor (geometries, zoning) 79

> For grain measurement, you get the following data:

Name	Geometry	Η (μm)	W (μm) Τ (μm)		Weights (µg)	FT	Rs (µm)		
Hel_1	2bf	200	125	115	6.8	0.83	64.8		
Hel_2	1+1	160	125	115	4.2	0.80	59.8		
Hel_3	No ру	200	145	140	9.4	0.81	73.5		
Hel-4	2 bf	150	80	70					
With:									
2 b	f=2 broken fac	es	1+1=1 pyramid + 1 bf						
No	py=No pyrami	ds							

- 1. Selected the grain shape
- 2. Grain geometry
- 3. Grain size
- 4. Use a Th/U value
- For zonation, selected where the U-Th content is localized and normalized amount and size.

Ketcham et al. (2011); Gautheron et al. (2012)

Version date: 10/02/2012 based on Qt: http://gt.nokia.com/

- With He, U, Th and Sm, you get the raw age for your sample.
 1. Calculate the alpha ejection corrected age
 - 1. Estimate the error on AHe age, by determining also the error associated with the determination of the F_T factor, knowing that the analytical error was at 4%.

Name	F _T	S	Rs	⁴He	U	Th	Sm	eU	Th/ U	Raw age	Cor age	σ
			(µm)	(nmol/g)	(ppm)					(Ma)		
Hel_1	0.83	4%	64.8	2,21	17	61	296	31	3,7	12,2	14.7	8%
Hel_2	0.80	4%	59.8	34,19	103	265	383	167	2,6	37,4	46.7	8%
Hel_3	0.81	4%	73.5	0,11	1	4	275	2	4,8	4,8	5.9	8%

(4) Ex 3. AHe age simulation

1. Using HeFTy, we will simulate AHe, ZHe and AFT age distribution

- 1. Test on AHe and ZHe age for two different thermal histories (A and B), the impact of:
 - a. Grain size,
 - b. eU content
 - c. grain chemistry (for apatite via the rmr₀)

- Balout, H., Roques, J., Gautheron, C., Tassan-Got, L., Mbongo-Djimbi, D., 2017. Helium diffusion in pure hematite (α-Fe2O3) for thermochronometric applications: a theoretical multi-scale study. Computational and Theoritical Chemistry, 1099: 21-28.
- ♦ Baxter, E.F., 2010. Diffusion of Noble Gases in Minerals. In: America, M.S.o. (Ed.), Diffusion in minerals and melts, pp. 509-557.
- Bengtson, A., Ewing, R.C., Becker, U., 2012. He diffusion and closure temperatures in apatite and zircon: A density functional theory investigation. Geochimica et Cosmochimica Acta, 86: 228-238.
- Beucher, R., Brown, R.W., Roper, S., Stuart, F., Persano, C., 2013. Natural age dispersion arising from the analysis of broken crystals, Part II. Practical application to apatite (U-Th)/He thermochronometry. Geochim. Cosmochim. Acta, 120: 395-416.
- Braun, J., 2003. Pecube: A new finite element code to solve the heat transport equation in three dimensions in the Earth's crust including the effects of a time-varying, finite amplitude surface topography. Computers and Geosciences, 29: 787-794.
- ♦ Braun, J., van der Beek, P., Batt, G., 2002. Quantitative thermochronology: Numerical methods for the interpretation of thermochronological data.
- Brown, R.W. et al., 2013. Natural age dispersion arising from the analysis of broken crystals, Part I. Theoretical basis and implications for the apatite (U-Th)/He thermochronometer. Geochim. Cosmochim. Acta, 122: 478-497.
- Cherniak, D.J., Watson, E.B., Thomas, J.B., 2009. Diffusion of helium in zircon and apatite. Chem. Geol., 268: 155-166.
- Copeland, P., Watson, E.B., Urizar, S.C., Patterson, D., Lapen, T.J., 2007. Alpha thermochronology of carbonates. Geochim. Cosmochim. Acta, 71: 4488-4511.
- ♦ Cros, A. et al., 2014. 4He behavior in calcite filling viewed by (U-Th)/He dating, 4He diffusion and crystallographic studies. Geochim. Cosmochim. Acta, 125: 414-432.

- Djimbi, D.M. et al., 2015. Impact of apatite chemical composition on (U-Th)/He thermochronometry: an atomistic point of view. Geochim. Cosmoch. Acta, 167: 162-176.
- Dodson, M.H., 1973. Closure temperature in cooling geochronological and petrological systems. Contrib. Min.
 Petrol., 40: 259-274.
- Ehlers, T.A., Farley, K.A., 2003. Apatite (U+Th)/He thermochronometry: methods and applications to problems in tectonic and surface processes. Earth Planet. Sci. Lett., 206: 1-14.
- Evans, N.J., Byrne, J.P., Keegan, J.T., Dotter, L.E., 2005. Determination of uranium and thorium in zircon, apatite, and fluorite: Application to laser (U-Th)/He thermochronology. Journal of Analytical Chemistry, 60(12): 1300-1307.
- Farley, K.A., 2000. Helium diffusion from apatite: general behavior as illustrated by Durango fluorapatite. J.
 Geophys. Res., 105: 2903-2914.
- ♦ Farley, K.A., 2002. (U-Th)/He dating: Techniques, calibrations, and applications. In: geochemistry, R.i.m. (Ed.), Noble Gases in Geochemistry and Cosmochemistry, pp. 819-844.
- ✤ Farley, K.A., Flowers, R., 2012. (U-Th)/Ne and multidomain (U-Th)/He systematics of a hydrothermal hematite from Eastern Grand Canyon. Earth and Planetary Science Letters, 359-360: 131-140.
- ✤ Farley, K.A., Wolf, R.A., Silver, L.T., 1996. The effects of long alpha-stopping on (U-Th)/He ages. Geochim. Cosmochim. Acta, 21: 4223-4229.
- Flowers, R., Ketcham, R.A., Shuster, D., Farley, K.A., 2009. Apatite (U-Th)/He thermochronology using a radiation damage accumulation and annealing model. Geochim. Cosmochim. Acta, 73: 2347-2365.
- ♦ Gallagher, K., 2012. Transdimensional inverse thermal history modelling for quantitative thermochronology.
 JGR, 117(B02408): 16pp.
- Gautheron, C. et al., 2013. Chemical influence on α-recoil damage annealing in apatite: implications for (U-Th)/He dating. Chem. Geol., 351: 257-267.

- ♦ Gautheron, C. et al., en prep. Comparative study of He and Ne diffusion in zircon by a multi-scale approach: implication for the (U-Th)/He/Ne chronometers. Chem. Geol.
- ♦ Gautheron, C., Tassan-Got, L., 2010. A Monte Carlo approach of diffusion applied to noble gas/helium thermochronology. Chemical Geology, 273: 212-224.
- Gautheron, C., Tassan-Got, L., Ketcham, R.A., Dobson, K.J., 2012. Accounting for long alpha-particle stopping distances in (U-Th-Sm)/He geochronology: 3D modeling of diffusion, zoning, implantation, and abrasion. Geochimica et Cosmochimica Acta, 96: 44-56.
- Gautheron, C.E., Tassan-Got, L., Barbarand, J., Pagel, M., 2009. Effect of alpha-damage annealing on apatite (U-Th)/He thermochronology. Chemical Geology, 266: 166-179.
- ♦ Gerin, C. et al., 2017. Influence of vacancy damage on He diffusion in apatite investigated at atomic to mineralogical scales. Geochim. Cosmoch. Acta, 197: 87-103.
- ♦ Green, P.F., Crowhurst, P.V., Duddy, I.R., Jaspen, P., Holford, S.P., 2006. Conflicting (U-Th)/He and fission track ages in apatite: Enhanced He retention, not annealing behaviour. Earth Planet. Sci. Lett., 250: 407-427.
- Guenthner, W., Reiners, P.W., Ketcham, R., Nasdala, L., Giester, G., 2013. Helium diffusion in natural zircon: radiation damage, anisotropy, and the interpretation of zircon (U-Th)/He thermochronology. American Journal of Science, 313: 145-198.
- → Janowski, M. et al., 2017. Neogene exhumation and relief evolution in the eastern Betics (SE Spain): insights from the Sierra de Gador. Terra Nova, 29: 91-97.
- Ketcham, R.A., 2005. Forward and inverse modelling of low-temperature thermochronolgy data. In: Reiners, P.W.a.E., T.A. (Ed.), Low temperature thermochronology: techniques, interpretations and applications. Reviews in mineralogy and geochemistry, pp. 275-314.
- Ketcham, R.A., Carter, A., Donelick, R.A., Barbarand, J., Hurford, A.J., 2007. Improved modeling of fissiontrack annealing in apatite. American Mineralogist, 92: 799-810.

- Ketcham, R.A., Gautheron, C., Tassan-Got, L., 2011. Accounting for long alpha-particle stopping distances in (U-Th-Sm)/He geochronology: refinement of the baseline case. Geochimica et Cosmochimica Acta, 75: 7779-7791.
- Ketcham, R.A., Guenthner, W.R., Reiners, P.W., 2013. Geometric analysis of radiation damage connectivity in zircon, and its implications for helium diffusion. American Mineralogist, 98: 350-360.
- Kraml, M. et al., 2006. A new multi-mineral age reference material for 40Ar/39Ar, (U-Th)/He and fission track dating methods: The Limberg t3 tuff. Geostandards and Geoanalytical Research, 30(2): 73-86.
- Leprêtre, R. et al., 2015. Post-rift history of the eastern Central Atlantic passive margin: insights from the Saharan region of South Morocco. Journal of Geophysical Research - Solid Earth, 120.
- Lovera, O.M., Richter, F.M., Harrison, T.M., 1989. The 40Ar/39Ar thermochronology for slowly cooled samples having a distribution of Diffusion Domain Sizes. Journal of Geophysical Research, 94(B12): 17,917-17,935.
- Lovera, O.M., Richter, F.M., Harrison, T.M., 1991. Diffusion domains determineb dy 39Ar released during step heeating. J. Geophys. Res., 96(B2): 2957-2069.
- McDowell, F.W., McIntosh, W.C., Farley, K.A., 2005. A precise 40Ar-39Ar reference age for the Durango apatite (U-Th)/He and fission-track dating standard. Chem. Geol., 214(3-4): 249-263.
- Ouchani, S., Dran, J.-C., Chaumont, J., 1998. Exfoliation and diffusion following helium ion implantation in fluorapatite: implications for radiochronology and radioactive waste disposal. Applied Geochemistry, 13(6): 707-714.
- ♦ Reiners, P.W., 2005. Zircon (U-Th)/He thermochronometry. In: Reiners, P.W., Ehlers, T.A. (Eds.), Thermochronology, Reviews in Mineralogy and Geochemistry, pp. 151-179.
- Reiners, P.W., Farley, K.A., 2001. Influence of crystal size on apatite (U+Th)/He thermochronology: an example from the Bighorn Mountains, Wyoming. Earth Planet. Sci. Lett., 188: 413-420.

- Shuster, D., Farley, K.A., 2005a. 4He/3He thermochronometry: theory, practice, and potential complications.
 In: Reiners, P.W.a.E., T.A. (Ed.), Low-temperature thermochronology: techniques, Interpretations, and Applications.
- Shuster, D., Farley, K.A., 2005b. Diffusion kinetics of proton-induced 21Ne, 3He, and 4He in quartz. Geochim.
 Cosmochim. Acta, 69(9): 2349-2359.
- Shuster, D., Flowers, R., Farley, K.A., 2006. The influence of natural radiation damage on helium diffusion kinetics in apatite. Earth Planet. Sci. Lett., 249: 148-161.
- Spiegel, C., Kohn, B., Belton, D., Berner, Z., Gleadow, A., 2009. Apatite (U-Th-Sm)/He thermochronology of rapidely cooled samples: The effect of He implantation. Earth Planet. Sci. Lett., 285: 105-114.
- Trachenko, K., Dove, M.T., Salje, E.K.H., 2002. Structural changes in zircon under a-decay irradiation. Physical Review B, 65: 18012.
- Valla, P. et al., 2012. Late Neogene exhumation and relief development of the Aar and Aiguilles Rouges massifs (Swiss Alps) from low-temperature thermochronology modeling and 4He/3He thermochronometry. Journal of Geophysical Research, 117(F01004): 1-23.
- ♦ Vasconcelos, P.M., Reich, M., Shuster, D., 2015. The paleoclimatic signatures of supergene metal deposits. Elements, 11: 317-322.
- Wolf, R.A., Farley, K.A., Silver, L.T., 1996. Helium diffusion and low-temperature thermochronology of apatite.
 Geochim. Cosmochim. Acta, 60: 4231-4240.
- ♦ Zeitler, P.K., Herczerg, A.L., McDougall, I., Honda, M., 1987. U-Th-He dating of apatite: A potential thermochronometer. Geochim. Cosmochim. Acta, 51: 2865-2868.
- ♦ Ziegler, J.F., 2008. SRIM-2008 The stopping range of ions in matter. United States Naval Academy, Annapolis.